
MCSH series

COMPACT SLIDE

Order example:

Features:

- A table cylinder suitable for short pitch mounting.The use of an endless track linear guide produces a table cylinder having excellent rigidity, linearity and non-rotating
- Mounting is possible from 3 or 4 directions.

Specification:

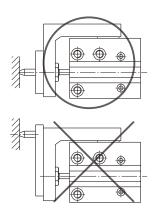
Model		МС	SH		
Acting type		Double	acting		
Tube I.D. (mm)	6	10	16	20	
Guide rail width (mm)	5	7	9	12	
Port size		M5>	< 0.8		
Medium		А	ir		
Min. operating pressure	1.2 kgf/cm ² 0.61 kgf/cm ² 0.51 kg (0.12 MPa) (0.06 MPa) (0.05 I				
Max. operating pressure	7.1 kgf/cm² (0.7 MPa)				
Proof pressure	1	0.7 kgf/cm	²(1.05 MPa	a)	
Ambient temperature	_	5~+60℃	(No freezin	g)	
Piston speed		50~50	0mm/s		
Allowable kinetic energy J (kgf • cm)	0.0125 (0.127)	0.025 (0.25)	0.05 (0.5)	0.1 (1.0)	
Lubricator		Not re	quired		
Cushion	Rubber bumpper				
Stroke length tolerance		+1 C	l.0)		
Sensor switch		RCE,	RCE1		

Table for standard stroke:

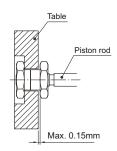
Tube I.D.	Stroke (mm)
φ 6,10,16,20	5, 10, 15, 20, 25, 30, 40, 50, 60

Theoretical force:

(Unit: N)

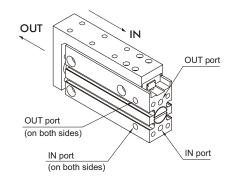

Tube I.D.	Piston rod	Operating	perating Piston area		Operating pressure (MPa)			
(mm)	(mm)	direction	(mm²)	0.3	0.5	0.7		
6	3	OUT	28.3	8.49	14.2	19.8		
0	3	Z	21.2	6.36	10.6	14.8		
10	4	OUT	78.5	23.6	39.3	55.0		
10		IN	66.0	19.8	33.0	46.2		
16	6	OUT	201.0	60.3	101.0	141.0		
10	O O	Z	172.0	51.6	86.0	121.0		
20	8	OUT	314.0	94.2	157.0	220.0		
	°	IN	264.0	79.2	132.0	185.0		

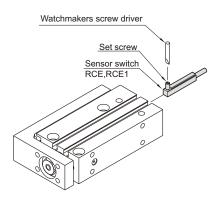
COMPACT SLIDE


Operating precautions

- Positively do not put fingers between the table and cylinder tube, as they can be caught when the piston rod retracts, If fingers are caught in a cylinder, there is a danger of injury due to the strong cylinder output, and therefore caution must be exercised.
- Operate within the limits of the maximum movable weight and allowable moment.
- When the output of the compact slide will be directly applied to the table, it should be applied along the rod axis. (See drawing below.)
- Be sure to attach a speed controller, and adjust the speed to 500mm/s or less.

Stroke Direction Backlash

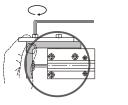

Since the connection between the piston rod and table is a floating structure, there is a maximum table backlash of 0.15mm in the stroke direction. (See drawing below.)


Piston rod and table connection

Operating direction with different pressure ports

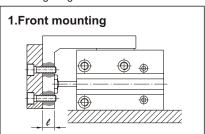
1 The compact slide can be piped from 3 directions. Confirm the pressure ports and operating direction. (See drawing below.)

Installation of sensor switch

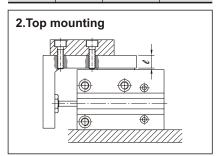



Mounting

Work piece mounting


Work pieces can be mounted on 2 surfaces of the compact slide.

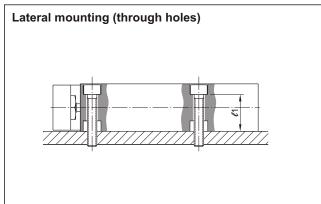
- Since the table is supported by the linear guide, take care not to apply strong impact or large moment, etc. when mounting work pieces.
- Hold the table when fastening work pieces to it with bolts, etc. If the body is held while tightening bolts, etc., the guide section will be subjected to large moment, and there may be a loss of precision.
- Tor connection with a load having an external support/guide mechanism, select an appropriate connection method and perform careful alignment.
- Use caution, as scratches or nicks, etc. on the sliding parts of the piston rod can cause malfunction and air leakage.



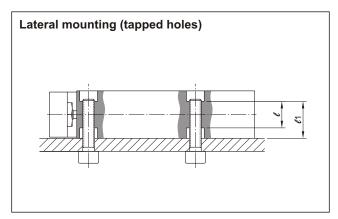
When mounting a compact slide, tighten the screws properly at a torque value within the limiting range.

Model	Bolt	Max. torque (Nm)	ℓ (mm)
MCSH-6	M3×0.5	1.1	5. 5
MCSH-10	M4×0.7	2.5	7.5
MCSH-16	M4×0.7	2.5	10
MCSH-20	M5×0.8	5.1	11

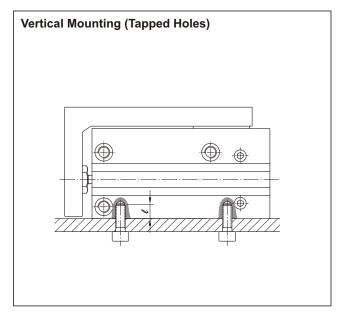
Model	Bolt	Max. torque (Nm)	ℓ (mm)
MCSH-6	M3×0.5	1.1	6.5
MCSH-10	M4×0.7	2.5	8
MCSH-16	$M4 \times 0.7$	2.5	9
MCSH-20	M5×0.8	5.1	9.5

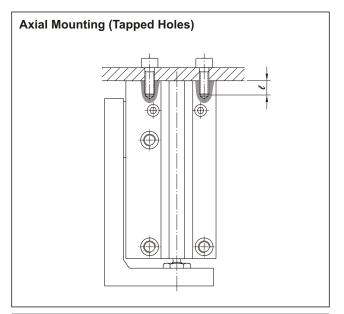

COMPACT SLIDE

Mounting


When mounting a compact slide, tighten the screws properly at a torque value within the limiting range.

Compact slide mounting


1 A compact slide can be mounted from 4 directions. Make a selection suitable for the applicable machinery and work pieces, etc.


Model	Bolt	Max. torque (Nm)	ℓ 1 (mm)
MCSH-6	M3×0.5	1.1	12.7
MCSH-10	M4×0.7	2.5	15.6
MCSH-16	M4×0.7	2.5	20.6
MOCHLOO	MENCO	- A	04.0

Model	Bolt	Max. torque (Nm)	ℓ 1 (mm)	ℓ (mm)
MCSH-6	M4×0.7	2.5	12.7	9.4
MCSH-10	M5×0.8	5.1	15.6	11. 2
MCSH-16	M5×0.8	5.1	20.6	16.2
MCSH-20	M6×1	8.1	24.0	16.0

Model	Bolt	Max. torque (Nm)	ℓ (mm)
MCSH-6	M3×0.5	1.1	4.8
MCSH-10	M4×0.7	2.5	6
MCSH-16	M4×0.7	2.5	6
MCSH-20	M5×0.8	5.1	8

Model	Bolt	Max. torque (Nm)	ℓ (mm)
MCSH-6	M3×0.5	1.1	4.8
MCSH-10	M4×0.7	2.5	6
MCSH-16	M4×0.7	2.5	6
MCSH-20	M5×0.8	5.1	8

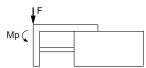
MCSH Table displacement \$\phi 6 - \phi 20\$

COMPACT SLIDE

Table accuracy

Б.	Stroke (st)					
Running parallelism	5~30	40~60				
paranonom	0.05mm or less	0.1mm or less				

Allowable moment (N·m)


Model	Pitch moment Mp	Yaw moment My	Roll moment Mr
MCSH-6	0.47	0.39	0.59
MCSH-10	0.96	0.82	1.37
MCSH-16	1.88	1.59	2.75
MCSH-20	3.14	2.75	5.49

Design precautions

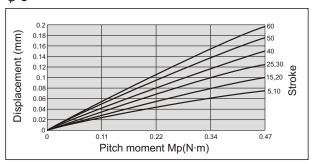
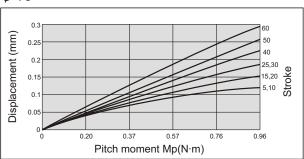
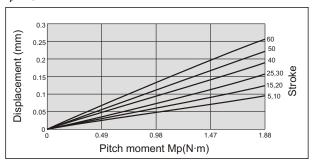
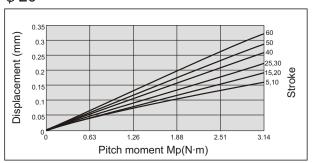

- Bore size selections cannot be made with the above graphs alone. Perform bore size selections with the model selection method provided on pages 5 and 6.
- 2 The displacement may increase after the action of an impact load. When the table is subjected to an impact load, there may be permanent distortion of the guide unit and increased displacement.

Table displacement due to pitch moment


Table displacement (arrow) when a load acts upon the section marked with the arrow at the full stroke of the compact slide.


 ϕ 6


φ10

φ16

 $\phi 20$

MCSH Table displacement \$6~\$20

COMPACT SLIDE

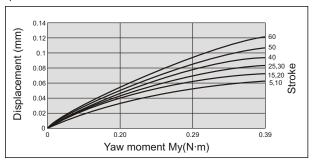
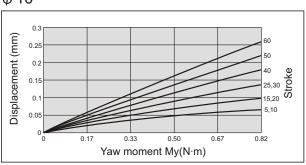
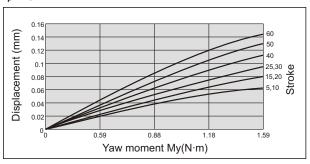
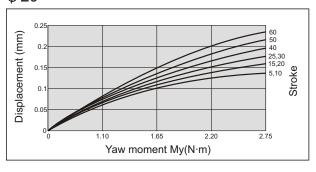


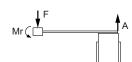
Table displacement due to yaw moment


Table displacement (arrow) when a load acts upon the section marked with the arrow at the full stroke of the compact slide.


 ϕ 6


φ10

ϕ 16



$\phi 20$

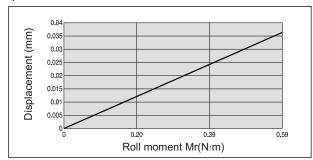
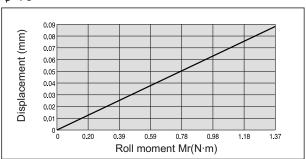
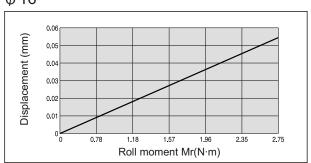
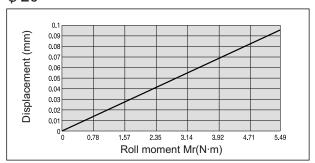


Table displacement due to roll moment


Table displacement (at A) when a load acts upon section ${\sf F}$ at the full stroke of the compact slide.


ϕ 6


φ10

φ16

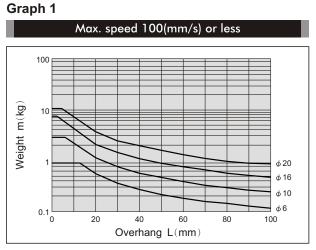
$\phi 20$

MCSH Model selection method ϕ 6~ ϕ 20

COMPACT SLIDE

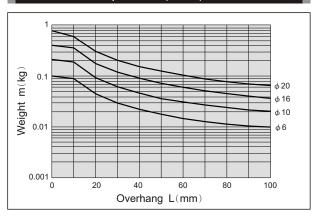
Caution: Separate confirmation of the theoretical output is necessary. Refer to the theoretical output table on page 2.

Selection conditions:

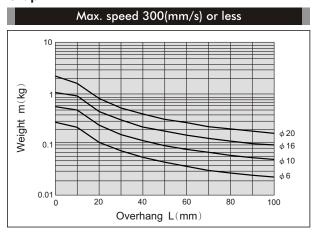

Determine the selection conditions in order, starting from the upper row in the table below, and choose one of the selection graphs to be used.the compact slide.

	,	Vertical					ı	Horizontal				
Mounting position	m				L		•	m Load ecca	entricity)		-	
Max. speed mm/s	~100	~300	~500		~100			~300			~500	
Load eccentricity ℓ mm				50	100	200	50	100	200	50	100	200
Selection graph	1	2	3	4	5	6	7	8	9	10	11	12

L: Overhang (the distance from the cylinder shaft center to the load center of gravity)
 The direction of L can also be a diagonal direction.
 (See drawing at right)


Graph 3

Selection graphs 1 to 3 (Vertical mounting)

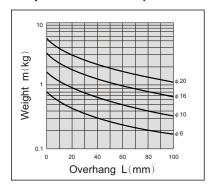


Max. speed 500(mm/s) or less

Cylinder shaft center

Graph 2

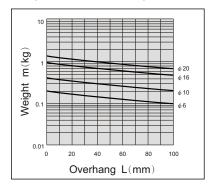
MCSH Model selection method ϕ 6~ ϕ 20



COMPACT SLIDE

Selection graphs 4 to 12 (Horizontal mounting)

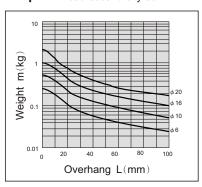
Max. speed 100(mm/s) or less


Graph 4 Load eccentricity 50mm

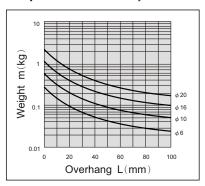
Graph 5 Load eccentricity 100mm

Graph 6 Load eccentricity 200mm

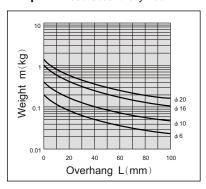
Selection Examples


Selection conditions:
 Mounting: Vertical
 Maximum speed: 500mm/s
 Overhang: 40mm
 Load weight: 0.1Kg

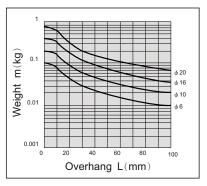
Refer to Graph 3 based on vertical mounting and a speed of


In Graph 3, find the intersection of a 40mm overhang and load weight of 0.1Kg, which results in a determination of $\phi\,20$.

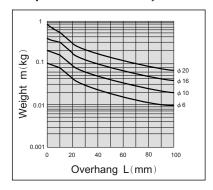
Max. speed 300(mm/s) or less


Graph 7 Load eccentricity 50mm

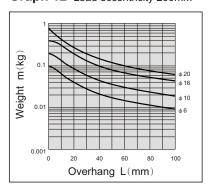
Graph 8 Load eccentricity 100mm



Graph 9 Load eccentricity 200mm



Max. speed 500(mm/s) or less


Graph 10 Load eccentricity 50mm

Graph 11 Load eccentricity 100mm

Graph 12 Load eccentricity 200mm

2 Selection conditions:

Mounting: Horizontal

Maximum speed: 500mm/s

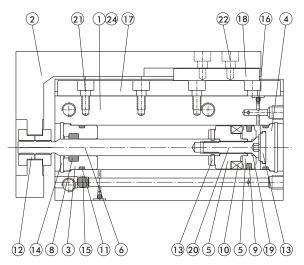
Load eccentricity: 50mm

Overhang: 30mm

Load weight: 0.1Kg

Refer to Graph 10 based on horizontal mounting, a speed of 500mm/s and load eccentricity of 50mm.

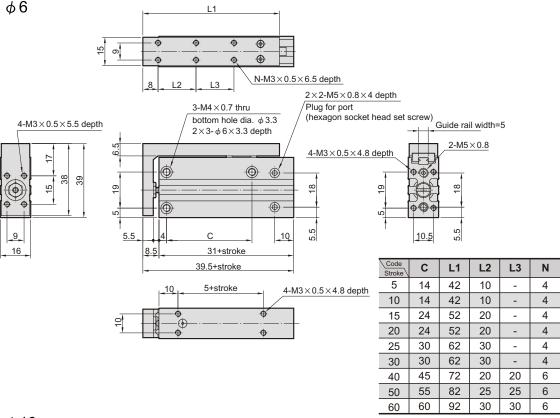
In Graph 10, find the intersection of a 30mm overhang and load weight of 0.1Kg, which results in a determination of $\,\phi$ 16 .

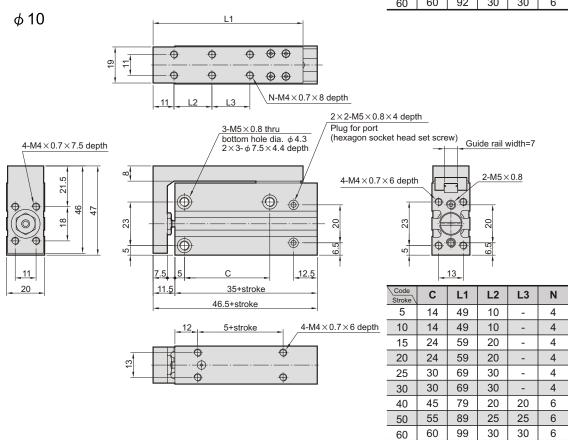

MCSH Inside structure & Parts list

COMPACT SLIDE

φ 6, φ 10 2 21 124 17 2322 18 16 4 12 14 7 8 3 15 11 6 13 19 5 10 9 5 13

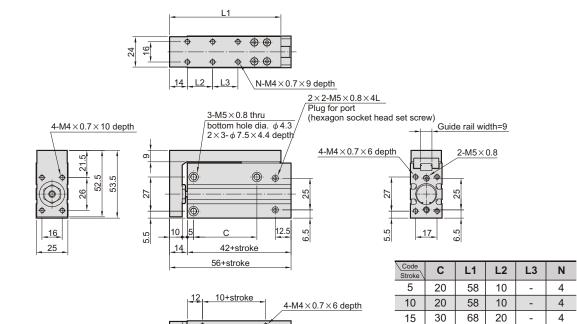
ϕ 16, ϕ 20


Material


No.	Tube I.D. Part name	6	10	16	20	Note
1	Body	Aluminum alloy				Anodized
2	Table	Aluminum alloy				Anodized
3	Rod cover	Aluminum alloy			Anodized	
4	Head cover	Aluminum alloy			Anodized	
5	Piston	Aluminum alloy				
6	Piston rod	Stainless steel				
7	Washer	Aluminum alloy				
8	Rod packing	NBR				
9	Piston packing	NBR				
10	Magnet ring	Magnet material				
11	Cover ring	NBR				
12	Rod front nut	Brass				
13	Cushion packing	NBR				
14	C type snap ring for hole	Spring steel				
15	Steel ball A	Stainless steel				
16	Steel ball B	Stainless steel				
17	Linear guide	Stainless steel				
18	Guide seat	Stainless steel				
19	Piston gasket	NBR				
20	Piston bolt	SCM				
21	Hexagon socket head cap screw A	Stainless steel				
22	Hexagon socket head cap screw B	Stainless steel				
23	Round head Phillips screw	Stainless steel				Only for ϕ 6
24	Hexagon socket head plug	Stainless steel				

MCSH Dimensions ϕ 6, ϕ 10

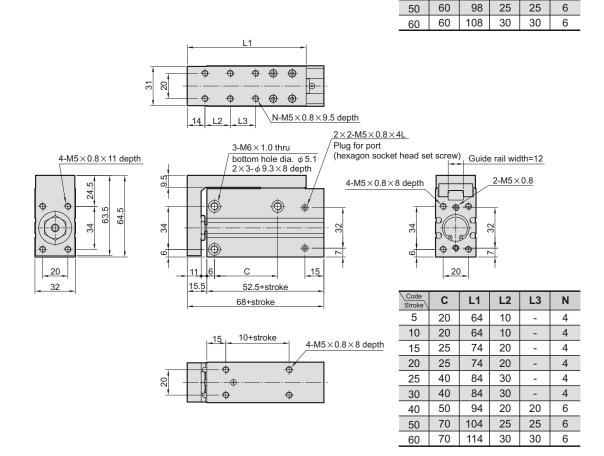
COMPACT SLIDE



MCSH Dimensions ϕ 16, ϕ 20

Mindman

COMPACT SLIDE


 ϕ 16

-

-

 $\phi 20$

